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Abstract — This paper deals with the complex problem of 

reliability evaluation of stochastic networks in which both links 
and nodes failures are considered, and compares two 
approximate approaches able to reduce the computation time: 
a sum of disjoint products (SDP) approach and another based 
on Monte Carlo simulation. In case of the SDP approach, the 
reliability is computed based on the minimal paths. In a first 
stage, only the links of the network are considered, and a 
‘multiple variables inversion’ technique for developing the set 
of minimal paths into a sum of disjoint products is applied. 
Then, in a second stage, each term of the set of disjoint link-
products is processed separately taking into consideration the 
reliability values for both links and adjacent nodes. In case of 
Monte Carlo simulation, for speeding up the method and 
reducing the computation time, both minimal paths and cuts 
are considered. Also, other acceleration techniques are applied. 

Keywords— two-terminal network reliability; link and node 
failure; SDP algorithm; minimal paths; multiple variable 
inversion technique; Monte Carlo simulation 

I. INTRODUCTION 

The theory of network reliability is applied in the real-
world systems that can be modeled as stochastic networks, 
such as communications systems, networks of sensors, 
social networks etc. Generally speaking, reliability or 
availability indices describe the ability of a network to 
perform a desired operation. Mostly, the study is limited to 
the operation between two given nodes (two-terminal 
reliability evaluation). Starting from a structure function 
expressed in terms of minimal paths or cuts ([1]-[4]), a SDP 
technique is then used to determine an equivalent function 
in the form of a sum of disjoint products [5]-[8]. 
Unfortunately, the problem of computing the network 
reliability based on SDP algorithms is NP-hard [6]. The 
problem of network reliability evaluation is even more 
complicated when both links and nodes failures are 
considered [9], [10]. Because of this, in case of large 
networks, other techniques for performance evaluation are 
also applied, such as those based on network decomposition 
([11]-[14]) or Monte Carlo simulation [15]-[20].  

To reduce calculation time, in most such works the 
authors assume that the nodes of the network are perfectly 
reliable. The basic idea for this simplified approach is that 

the failure of a node inhibits the work of all links connected 
to it, so that starting from the given network with unreliable 
nodes, reduced models with perfect nodes but with links 
having increased failure probabilities can be obtained. This 
approach is simpler but not very precise. As the failure of a 
node obstructs the work of all adjacent links, the work of 
these links depends on the state of this common node. 
However, the model is solved under the assumption that the 
failures that may occur in the network are independent. For 
this reason, the reliability estimation should be accepted 
with caution. Indeed, the error of reliability estimation is 
unacceptable in many cases, especially when the 
probabilities of node failure have higher values. For this 
reason, we do not use such simplified models in this work. 

In this paper we are focused on the problem of 
approximate evaluation of reliability or availability in large 
networks, when both links and nodes failures are 
considered, and in this regard, an approximate SDP 
algorithm and a Monte Carlo simulation technique are 
compared. 

The approximate SDP algorithm for two-terminal 
network reliability evaluation we consider involves two 
stages. In the first stage, the method is focused only on the 
links of the network. For the two given nodes, all the 
minimal paths are enumerated, and then, this set of minimal 
paths is transformed into a set of disjoint products. In the 
second stage, each term of the sum of disjoint products 
including only link state variables (i.e., link-product) is 
processed distinctly by considering the reliability values of 
both links and adjacent nodes. In this way, a good accuracy 
is obtained. 

The rest of this paper is organized as follows. Section II 
introduces notations, a nomenclature and some preliminary 
considerations, while section III presents general issues 
regarding the network reliability evaluation. Section IV 
provides a method for exact evaluation of two-terminal 
network reliability when both nodes and links failures are 
considered. Section V presents an approximate SDP 
approach that reduces the complexity of this problem in 
medium-to-large networks, while section VI describes a 
Monte Carlo simulation technique. Section VII presents 
comparative results and finally, in Section VIII, some 
conclusions are drawn regarding this work. 
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II. PRELIMINARIES 

A. Nomenclature 

a) Reliability. The two-terminal reliability of a stochastic 
network expresses the probability that at least one path 
between the two given nodes operates successfully. 

b) Minimal path. A minimum set of links and their adjacent 
nodes whose good operation is sufficient to ensure the 
connection between two given nodes. 

c) Minimal cut. A minimum set of links and/or nodes 
whose failure disconnects two given nodes.  

d) Uniproduct. A Boolean product composed of different 
uncomplemented variables. 

e) Mixproduct. A product of one uncomplemented 
subproduct and one or more complemented subproducts. 

f) Disjoint products. A set of products expressing mutually 
exclusive conditions. 

B. Notations 

a) ( , )G V E is a network model with node set 

{ , , , }kV y y y= 1 2  and link set { , , , }mE x x x= 1 2  ; 

b) , ,s t V s t∈ ≠ , are the source and target nodes; 

c) xp is the reliability of node x V∈ or link x E∈ , and 

1x xq p= − ; 

d) s tR −  is the reliability of the network model with s and t 
the two given nodes ( s t−  network reliability). 

e) )(APr  is the probability of the event A. 

C. Assumptions 

For this study, we assume that a network component 
(i.e., node or link) is either operational or failed, so a logical 
variable is used to denote its state. Also, we assume that all 
failures in the network are independent. 

III. CONSIDERATIONS ON NETWORK RELIABILITY 

EVALUATION 

For the network model ( , )G V E  and two given nodes, 

let the minimal path set be },,,{ 21 npMPMPMPMPS = . A 

minimal path MPSMPi ∈  is described by a product of 
logical variables associated with some network elements, 
and the reliability of this path is  

 ∏
∈

=
iMPx

xi pMPPr )( . (1) 

 Based on MPS, the structure function 
np

i
iMPS

1=

=  is 

defined, and the reliability s tR −  is expressed with the 
relation 
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To compute s tR −  based on (2), the well-known rule of 
SDP can be applied [6]: 
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Consequently, S is developed in an equivalent function 
S ′  comprising only disjoint products (DP), so that the 
reliability s tR −  can be obtained with the relation 
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In other words, based on the set of minimal paths, the 
evaluation of network reliability is essentially reduced to the 
problem of generating an equivalent set of disjoint products. 

An SDP method based on ‘single variable inversion’ 
(SVI) for network reliability assessment has been presented 
for the first time by Aggarwal, Misra, and Gupta [21]. 
Subsequently, other better SVI methods were reported. But, 
a more effective approach is based on ‘multiple variable 
inversion’ (MVI) techniques when a product may contain 
one or more complemented subproducts. An excellent 
survey on SVI and MVI techniques can be found in [5], [7], 
or [8]. A new MVI method, called NMVI, is proposed by 
Caşcaval and Floria in [1]. As shown in [1], NMVI is an 
efficient method, providing fewer disjoint products 
compared with other well-known MVI techniques. This is 
the SDP algorithm we consider in this work.  

In the next sections we discuss the problem of network 
performance evaluation, in which both links and nodes 
failures are considered. First, an exact method of reliability 
evaluation is given. Then, the approximate methods we 
compare in this work are presented. 

IV. EXACT EVALUATION OF NETWORK RELIABILITY 

For a network model an exact computation of the two-
terminal reliability can be obtained by using the set of 
minimal paths that include both links and adjacent nodes. 
Compared to the case where the study is limited to the links 
of the network, when the nodes are also considered, the 
number of minimal paths is unchanged, but any term is 
extended by including the adjacent nodes.  

To illustrate this method, let us analyze the network N1 
presented in Fig. 1, with 1 and 4 the source and target nodes. 
In the reliability model, these two terminal nodes are 
considered in series with the rest of the network.  
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Fig. 1 - Network model with unreliable nodes (N1) 

For the two given nodes, the set of minimal paths 
composed of both nodes and links is  

,235,35,23,23,3,2{41 acfgbfgbcdacebeadMPS =−  

   }2356,356 acfhkbfhk . 

Based on the NMVI method, the following set of disjoint 
products results: 

DPS1-4 = { 2ad , 3 2be ad , 23abcde , 23abcde ,  

35 2be fg d , 235abcde fg , 235abcde fg ,  

2356abcde f ghk , 356 2be f ghk d ,  

2356ab cde f ghk }. 

Finally, by applying (4), for the two-terminal reliability 

41−R , the following equation can be written: 

( )1( 2324141 daebda pppppppppppR −+=−       (5) 

)1()1(32 dbeca ppppppp −−+  

)1()1(32 eadcb ppppppp −−+  

)1()1( 253 dbgfb pppppppp −−+  

)1()1()1(532 ecagfdb pppppppppp −−−+  

)1()1()1(532 edbgfca pppppppppp −−−+  

)1()1()1()1(6532 gecakhfdb ppppppppppppp −−−−+  

)1()1()1( 2653 dgekhfb ppppppppppp −−−+  

).)1()1()1()1(6532 gedbkhfca ppppppppppppp −−−−+  

As verification, observe that for the links k and h and the 
common node 6, the series reliability rule could be applied. 
For this reason, all these elements are always found 
together. 

 The problem that arises in case of exact network 
reliability evaluation is related to the SDP algorithms. More 
exactly, compared with the case in which the study is 
limited to the links of the network, when the adjacent nodes 
are also considered, the number of disjoint products 
increases significantly for large networks [9].  

For example, in case of a network model with 780 
minimal paths, by applying the NMVI method on the link-
products, 48696 disjoint products are obtained. When both 
links and nodes are considered, the number of disjoint 

products grows up to 105468. In other words, with respect 
to the number of disjoint products, the relative growth is 
about 117%. With a SVI technique, the growth is even 
greater. For this reason, other approximate methods may be 
preferred for large networks. 

V. APPROXIMATE SDP METHOD FOR NETWORK 

RELIABILITY EVALUATION  

To reduce the computation time, in the first stage, the 
SDP approach is limited to the links of the network. Thus, 
the set of minimal link-paths are extended into a set of 
disjoint link-products by applying the NMVI method. 

Then, in a second stage, each term of the sum of disjoint 
products composed only of link state variables is processed 
distinctly by considering both links and adjacent nodes 
reliability values. The nodes reliability values are taken into 
consideration in a specific mode for each term of the set of 
disjoint link-products, when only the adjacent nodes of the 
links that compose the current product are considered. That 
is the basic idea for this approximate approach.  

A term DP in the set of disjoint products DPS can be a 
mixproduct that includes one uniproduct (UP) and one or 
more complemented subproducts. As illustrated in the 
previous section for the network model N1, the uniproduct 
UP includes a path that connects the source and target 
nodes. The set of all nodes adjacent to the links that 
compose the uniproduct UP is indicated by AN. The 
probability of the network state described by UP is given by 
the equation: 

              ∏∏
∈∈

=
ANy

y
UPx

x ppUPPr )( . (6) 

The main problem is how to evaluate with a good 
accuracy the probability of a network state described by 
complemented subproducts. 

First, let us consider a complemented variable x  that 
describes a failed state of a link which connects two nodes, 
let us say iy  and jy . The probability corresponding to this 

state is computed by the equation: 

xpxPr ′−=1)( , where 











∉∈
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=′

ANyANypp

ANyANypp

ANyyppp

p

jiyx

ijyx

jiyyx

x

j

i

ji

,if

,if

,if

       (7) 

Now, let us consider a complemented subproduct 

kxxx 21  which describes the state of inoperability for a 
group of k links of the network. The probability 
corresponding to this state is computed by the equation 

 XxxxPr k −=1)( 21  , (8) 
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where the product X  comprises the probabilities of the 
corresponding links and also of the adjacent nodes that do 
not belong to AN, included only once. 

To illustrate this rule, let us consider again the network 
model N1 presented in Fig. 1, with 1 and 4 the source and 

the target nodes. Take, for example, the mixproduct adbe  
composed of the uniproduct beUP =  and the 

complemented subproduct ad . For the path be , the set of 
adjacent nodes is }3{=AN . Finally, 

)1()( 23 ppppppadbePr daeb −= . 

VI. RELIABILITY EVALUATION BY A MONTE CARLO 

SIMULATION APPROACH 

The network topology related to the two given nodes is 
described in the simulation program by a binary matrix Q 
that reflects all the minimal paths between s and t, paths that 
include both links and nodes. For the network model 
presented in Fig. 1, but with the source and target nodes 1 
and 6, the set of minimal paths is 

,235,245,35,34,24{61 acfkadgkbfkbehadhMPS =−  
           ,234,345,345,234 bcdhbegkbfghaceh  

          ,2345,2345,2345 acegkacfghadefk  

          }2345bcdgk , 

and the matrix of capability Q is given in Fig. 2. 

Note that, in the reliability model, the terminal nodes are 
considered in series with the rest of the network, so that the 
two-terminal reliability is computed by using the equation 

 MCtsts RppR =− , (9) 

where MCR  is the probability value given by simulation. 

The network state after the period of time for which the 
reliability is evaluated, without the nodes s and t as 
mentioned before, is described by a binary vector S. The 
network elements are assigned to the locations in vector S 
the same as in matrix Q. Remember that we need to evaluate 
the probability that at least one path between s and t 
operates successfully. Thus, to check if the nodes s and t are 
connected in the state S, one can apply the procedure 
presented in Fig. 3. 

Based on the simulation results, the network reliability 
can be estimated by the equation 

 
NT

ns
RMC = , (10) 

where ns is the number of successful attempts for the 
connection ts − , and NT  is the total number of trials. 

In order to accelerate the Monte Carlo simulation, the 
following measures were implemented: 

a) Only operations with integers are made to determine the 
state of the network at a trial; 

2 3 4 5

1 0 1 0 1 0 0 1 0 0 0 1 0

0 1 0 1 0 1 0 0 0 1 0 0 1

0 1 1 0 0 1 0 0 1 0 0 1 0

1 0 1 1 1 0 0 1 0 0 1 0 1

1 1 0 1 1 0 1 0 0 1 0 0 1

1 1 1 0 1 0 1 0 1 0 0 1 0

0 1 1 1 0 1 0 0 0 1 1 1 0

0 1 1 1 0 1 0 0 1 0 1 0 1

1 1 1 0 0 1 1 1 0 0 0 1 0

1 1 1 1 1 0 0 1 1 1 0 0 1

1 1 1 1 1 0 1 0 0 1 1 1 0

1 1 1 1 1 0 1 0 1 0 1 0 1

1 1 1 1 0 1 1 1 0 0 1 0 1

a b c d e f g h k
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Fig. 2 – Q matrix for the network model N1  (s = 1, t = 6). 
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Fig. 3 – Checking the ts −  connection in the network state S. 

b) To reduce the checking of the connection ts −  in the 
network state S, the paths described in matrix Q are ordered 
taking into account the corresponding probabilities 
calculated with (6); 

c) When the network reliability is lower, the checking of the 
connection ts −  in the network state S is speeded up by 
using a reduced set of minimal cuts for the two given nodes; 

d) For networks of high reliability, some paths in matrix Q 
with the highest probabilities of operation are treated 
distinctly. Thus, at a test, only the states for the network 
elements included in these paths are determined, thus 
avoiding many unnecessary operations. 

Compared with a standard Monte Carlo method [15], by 
applying these acceleration measures, the simulation time is 
reduced to less than half. We call this method Reduced 
Monte Carlo (RMC) simulation. 
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VII. COMPARATIVE NUMERICAL RESULTS  

 To compare these two approximate approaches, the 
network models presented in Fig. 4 were considered. For 
both nodes and links, the reliability values were randomly 
generated in the range [0.95, 1]. The numerical results are 
presented in Table I. To verify the accuracy of the reliability 
evaluation, for the first two models, N2 and N3, the exact 
values obtained based on the SDP method presented in 
section IV are also included. For the RMC simulation, for a 
good accuracy, 107 trials were generated for each test.  

 Comparative results regarding the computing time for 
these evaluations are presented in Table II. 

 With respect to the computing time for applying an 
SDP algorithm, for the simple network model N2 with a 
number of hundreds of minimal paths, this value is reduced, 
less than one second. But, for the large network model N4 

with more than 70000 minimal paths, the computing time is 
excessively high, of the order of days. 

 Regarding the RMC simulation, obviously, the 
execution time and the reliability estimation accuracy 
depend on the number of trials. Acceptable but not very 
good accuracy can be obtained with a number of trials 
ranging from 104 to 105. However, the convergence is very 
slow and, therefore, for high accuracy, the number of trials 
must be in the range 107−109. 
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a) 13-node, 22-link network (N 2). 

 

 
 

b)  20-node, 39-link network  (N 3). 

 

 
c)  32-node, 52-link network (N 4). 

Fig. 4 - Network models with unreliable nodes. 

TABLE I. TWO-TERMINAL NETWORK RELIABILITY ( s tR − ). COMPARATIVE RESULTS 

Network model Connection studied 
SDP approach –  
exact evaluation 

SDP approach –  
approximate evaluation 

RMC simulation 

N2  
s = 1, t = 13 
(np = 280) 

0.982883 0.980659 0.983070 

N3  
s = 1, t = 20 
(np = 11848) 

0.978858 0.97670 0.978880 

N4  
s = 1, t = 32 
(np = 70082) – – 0.967937 

545



TABLE II. COMPUTING TIME FOR RELIABILTY EVALUATION 

Network 
model 

SDP approach – 
exact evaluation 

SDP approach –  
approximate 
evaluation 

RMC 
simulation 
(107 trials) 

N2 0.1 s 0.06 s 3.3 s 

N3 21 min 23 s 13 min 15 s 13 s 

N4 - - 24 min 3 s 

  

 Having in view the reliability evaluation time, and also 
the estimation accuracy, we can say that for medium 
networks an SDP approach is recommended, whereas for 
large networks, an RMC simulation approach is preferable. 
For a very large network, the Monte Carlo simulation is the 
only solution. 

VIII. FINAL REMARKS 

The efficiency of a method dedicated to the evaluation 
of network reliability depends to a great extent on the 
network under study. In case of complex networks, 
approximate approaches are necessary, especially the Monte 
Carlo simulation (see, for example, [17], [20]). A standard 
Monte Carlo simulation leads to a high computing time. For 
this reason, specific measures for speeding up the simulation 
time are strongly required. Some of them are presented in 
this paper.  

The main disadvantage of the simulation is that the 
program is executed entirely for any set of reliability values 
associated with the nodes or the links of the network. In 
other words, any change in the set of reliability values for 
the network components, implies a new execution for the 
simulation program. In practice, for a connection between 
two given nodes, it has to set the reliability of the network 
components until the required reliability is reached. In this 
case, the Monte Carlo simulation is quite difficult to apply. 

 In case of a SDP approach, for a connection between two 
given nodes, the minimal paths and the corresponding 
disjoint products must be generated only once. After that, 
the two-terminal reliability is computed quickly based on 
(4), so that it is easy to adjust the reliability of the network 
components to reach the required connection reliability. For 
these reasons, the SDP methods for approximate evaluation 
of network reliability are necessary. The method proposed 
in this work is not so accurate, but it offers the advantage of 
a pessimistic estimation, so that the result can be treated as a 
lower bound. Improving the estimation accuracy by an SDP 
approach is a subject for future work. 

 For complex networks, where the simulation time is too 
high, other methods that lead to a network decomposition 
are also useful, as demonstrated in [10]-[14]. Also, an 
approach based on binary decision diagrams can be applied 
to reduce the computation time [22].  
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